Graph Partitioning Using Matrix Values for Preconditioning Symmetric Positive Definite Systems
نویسندگان
چکیده
منابع مشابه
Graph Partitioning Using Matrix Values for Preconditioning Symmetric Positive Definite Systems
Prior to the parallel solution of a large linear system, it is required to perform a partitioning of its equations/unknowns. Standard partitioning algorithms are designed using the considerations of the efficiency of the parallel matrix-vector multiplication, and typically disregard the information on the coefficients of the matrix. This information, however, may have a significant impact on th...
متن کاملGeometrical Inverse Preconditioning for Symmetric Positive Definite Matrices
We focus on inverse preconditioners based on minimizing F(X) = 1− cos(XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F(X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of...
متن کاملA High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems
We study preconditioning techniques used in conjunction with the conjugate gradient method for solving multi-length-scale symmetric positive definite linear systems originating from the quantum Monte Carlo simulation of electron interaction of correlated materials. Existing preconditioning techniques are not designed to be adaptive to varying numerical properties of the multi-length-scale syste...
متن کاملA Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems
We analyze and discuss matrix-free and limited-memory preconditioners (LMP) for sparse symmetric positive definite systems and normal equations of large and sparse least-squares problems. The preconditioners are based on a partial Cholesky factorization and can be coupled with a deflation strategy. The construction of the preconditioners requires only matrix-vector products, is breakdown-free, ...
متن کاملParallel Numerical Algorithms for Symmetric Positive Definite Linear Systems
We give a matrix factorization for the solution of the linear system Ax = f , when coefficient matrix A is a dense symmetric positive definite matrix. We call this factorization as "WW T factorization". The algorithm for this factorization is given. Existence and backward error analysis of the method are given. The WDWT factorization is also presented. When the coefficient matrix is a symmetric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2014
ISSN: 1064-8275,1095-7197
DOI: 10.1137/120898760